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Fractional dynamics from the ordinary Langevin equation

A. A. Stanislavsky*
Institute of Radio Astronomy, 4 Chervonopraporna St., Kharkov 61002, Ukraine

~Received 15 August 2002; published 27 February 2003!

We consider the usual Langevin equation depending on an internal time. This parameter is substituted by a
first passage time of a self-similar Markov process. Then the Gaussian process is parent, and the hitting time
process is directing. The probability to find the resulting process at the real time is defined by the integral
relationship between the probability densities of the parent and directing processes. The corresponding master
equation becomes the fractional Fokker-Planck equation. We show that the resulting process has non-
Markovian properties, all its moments are finite, the fluctuation-dissipation relation and the H-theorem hold.
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I. INTRODUCTION

The Langevin equation is a powerful tool for the study
dynamical properties of many interesting systems in phys
chemistry, and engineering@1,2#. The success of the ap
proach rests on the description of macroscopic quant
starting from microscopic dynamics, where the effect of f
degrees of freedom~heat bath in statistical physics and so
state physics, short wavelength modes in meteorological
climate models, etc.! can be often taken into account b
noise@3–6#. Gaussian noise leads to normal diffusion with
mean square displacement that grows linearly in time an
an exponential relaxation. Equivalently, the phenomena
be also described by the ordinary Fokker-Planck equa
~FPE! for the time evolution of the probability density of th
random processes.

However, many systems exhibit anomalous behavior
their transport and relaxation properties@7,8#. Anomalous
diffusion has the mean square displacement increasing
~nonlinear! power law in time, and anomalous relaxatio
shows a slow power law decay in the long-time limit. T
attempt to state a dynamical foundation in statistical phys
as well as the great interest in understanding the phys
mechanism leading to anomalous diffusion or relaxati
calls into being the generalized Langevin equations@9,10#.
The generalizations affect either the equation form itself~for
example, via the memory kernel! or/and the character of cor
relations in the fluctuating force@11–13#. The way to the
description of anomalous diffusion or relaxation is n
unique. In this paper we show that the ordinary Lange
equation can result in anomalous diffusion or relaxation o
ing to the fact that the temporal degree of freedom beco
stochastic. The approach clarifies a microscopic deriva
and interpretation for the fractional FPE. The ordina
Langevin equation is a particular case of the new model

The paper is organized as follows. In Sec. II we introdu
the concept of the stochastic time clock. The new clock~ran-
dom process! generalizes the deterministic time clock of th
ordinary Langevin equation and governed by the rand
process described by the stochastic differential equation.
directing process arises from a self-similara-stable random

*Electronic address: alexstan@ira.kharkov.ua
1063-651X/2003/67~2!/021111~6!/$20.00 67 0211
f
s,

s
t

nd

to
n
n

n

s a

s,
al
,

t
n
-
es
n

e

m
he

process of temporal steps. Using properties of the stocha
time clock, in Sec. III we write the corresponding mas
equation with the fractional derivative of time. To know th
solution of the usual FPE with a time-independent kern
one can find immediately the solution of its fractional ge
eralization via the integral relation. The ordinary Langev
equation has a stationary state. The same feature rem
valid, when passing to the stochastic time clock. For t
case, Sec. IV is devoted to the fluctuation-dissipation rela
and theH theorem. The randomization of time clock can
also applicable for the general kinetic equation~Sec. V!. The
fact is illustrated on a concrete example, the relaxation i
two-state system. We end the paper with a short summar
Sec. VI.

II. STOCHASTIC TIME ARROW

The main feature of time is its direction. Time is on
running from the past to the future. In our consideration
intend to save the property of time. For the ordinary Lang
vin equation the time variable is deterministic. Now set th
variable as an internal parametert. The motion of a point
particle of velocityV(t) in a thermal bath is determined by
viscous frictiongV and random collisionsW(t), by means
of

dV~t!52gV~t!dt1dW~t!. ~1!

As usual,W(t) is a Wiener process with zero mean a
variance per unit of time equal to 2D. Let us randomize the
time clock of the processV(t). Not every random process i
suitable for our goal. First of all the appropriate process m
be strictly nondecreasing. Assume that the time variable
sum of random temporal intervalsTi . Let Ti be independent
identically distributed variables. It is not necessary to kn
the exact form of their probability distribution. Their belong
ing to the strict domain of attraction of aa-stable distribu-
tion (0,a,1) is quite enough. The parameter restricti
0,a,1 arises from the need to keep the random time st
Ti as non-negative random variables. The sum of rand
variablesn21/a(T11•••1Tn),nPN converges in distribu-
tion to the a-stable one. As has been shown in Ref.@14#,
there exists the limit of the following process,TDt(t)
5$ bt/Dt c11%21/a( i 51

bt/Dt c11Ti underDt→0, wheret is the
©2003 The American Physical Society11-1
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internal time separated on discrete values with a stepDt,
andbac denotes the integer part ofa. Let us now make use o
the limit passage from ‘‘discrete steps’’ to ‘‘continuou

ones.’’ The new process satisfies the relationT(t)5
d

t1/aT(1), where5
d

means equal in distribution. The positio
vector of a walking particle at the true timet is defined by
the number of jumps up to timet. This discrete counting
process isNt5max$nPNu( i 51

n Ti<t%. The continuous limit
of the discrete counting process$Nt% t>0 is the hitting time
processS(t)5 inf$xuT(x).t% @14#. The hitting timeS(t) is
called also a first passage time. For a fixed time it repres
the first passage of the stochastic time evolution above
time level. The random processS(t) is just nondecreasing
and depends on the true timet. We choose it for a new time
clock ~stochastic time arrow!, assuming its statistical inde
pendence on the random variableV.

Although the random processS(t) is self-similar, it has
neither stationary nor independent increments, and all its
ments are finite@14,15#. This process is non-Markovian, bu
it is inverse to the continuous limit of a Markov rando
process of temporal stepsT(t), i.e., S„T(t)…5t. The ana-
lytical form of the probability density of the random variab
S(t) can be calculated as follows. According to Ref.@14#, the
expectation^e2vS(t)&5*0

`dx e2vx pS(t,x) is equal to the
Mittag-Leffler functionEa(2vta). After the Laplace trans-
form of the Mittag-Leffler function with respect tot, the
expectation can be easily inverted analytically with resp
to v. Then the probability density of the processS(t) is
written as

pS~ t,t!5
1

2p i EBr
eut2tua

ua21du, ~2!

where Br denotes the Bromwich path. This probability de
sity characterizes the probability to be at the internal timt
on the real timet. After the variable transformut→u and
denoting z5t/ta, the function pS(t,t) takes the form
t2aFa(z), whereFa(z)51/2p i *Bre

u2zua
ua21 du. On de-

forming the Bromwich path into the Hankel path, we find t
Taylor series of the functionFa(z), i.e.,

Fa~z!5 (
k50

`
~2z!k

k!G~12a2ka!
, ~3!

whereG(x) is the usual gamma function. Since the radius
convergence of the power series~3! can be proven to be
infinite for 0,a,1, the functionFa(z) is entire inz. Thus,
the exchange between the series and the integral in the
culations of the Taylor series~3! is quite legitimate. The
Laplace image of the functionFa(z) is expressed in terms o
the Mittag-Leffler function

E
0

`

e2zzFa~z!dz5Ea~2z!, z.0.

Feller conjectured and Pollard proved in 1948 that
Mittag-Leffler functionEa(2x)5(n50

` (2x)n/G(11na) is
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completely monotonic forx>0, if 0,a<1. Moreover,
Ea(2x) is an entire function of order 1/a for a.0 @16#.
Hence, by Feller@16#, one can conclude that the functio
Fa(z) is non-negative inz.0. Taking into account the nor
malization relation*0

`Fa(z)dz51, the functionpS(t,t) is
just a probability density. Ifa51/2, from series~3! it is easy
to recognize the well-known Gaussian functionFa(z)
5p21/2exp(2z2/4).

III. FRACTIONAL FOKKER-PLANCK EQUATION

The Langevin equation directed by the stochastic ti
clock S(t) can be written in the form

dV„S~ t !…52gV„S~ t !…dS~ t !1dW„S~ t !…. ~4!

The statement is quite justified. The processV„S(t)… is a
continuous martingale, and the directing processS(t) is a
continuous submartingale with respect to an appropriate
tration @15#. All the moments of both parent and directin
processes are finite. The same concerns the processV„S(t)….
Now the random walk of a particle is defined by two Marko
processes, random waiting timesT(t) between random
jumpsV(t). The discrete example of such a walk is show
in Fig. 1. A similar approach, i.e., the modeling of anomalo
diffusion by two independent random processes indexed b
common continuous parameter, has been already sugge
in Ref. @17#. However, the inverse process to the time ev
lution was not completely defined. It was not recognized a
first passage process. No direct relationship between Eqs~1!
and~4! was found. This is also a main difference between
subject of Ref.@18# and our paper.

The resulting processV„S(t)… is subordinated toV(t),
called the parent process, and is directed byS(t), called the
directing process@16#. The hitting time processS(t) just sat-
isfies necessary properties imposed on any directing pro
~independent, positive and non-decreasing!. The directing
process is often referred to as the randomized time or op
tional time. In other words, the subordinated processV„S(t)…

FIG. 1. Single realization of a continuous time random wa
with random waiting timesTi between successive random jumps
velocity Vi .
1-2
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is obtained by randomizing the time clock of a random p
cessV(t) using a random processS(t). In compliance with
Ref. @16#, the probability density of the random processv t
5V„S(t)… is expressed by the integral relation

pv t~V,t !5E
0

`

pV~V,t!pS~ t,t!dt, ~5!

wherepV(V,t) represents the probability to find the rando
value V on the internal timet. Recall thatpS(t,t) is the
probability to be at the operational timet on the real timet.
It is well known that the stochastic differential equation
type~1! is equivalent to the corresponding FPE. In particu
the probability densitypV(V,t) obeys the standard FPE

]pV~V,t!

]t
5L̂FPp

V~V,t!,

where L̂FP is a time-independent Fokker-Planck opera
whose exact form is not important here. The Laplace tra
form of the functionpv t(V,t) with respect to time replace
integral relation ~5! by the algebraic one,p̄v t(V,u)
5ua21p̄V(V,ua). Acting the operatorL̂FP on the Laplace
image, we obtain@ L̂FPp̄

v t#(V,u)5uap̄v t(V,u)2Q(V)ua21,
where Q(V) is the initial condition. The inverse Laplac
transform gives the fractional FPE

pv t~V,t !5Q~V!1
1

G~a!
E

0

t

dt~ t2t!a21@ L̂FPp
v t#~V,t!.

~6!

This equation has also the equivalent form

]apv t~V,t !

]ta
2

Q~V!t2a

G~12a!
5L̂FPp

v t~V,t !,

where]a/]ta denotes the Liouville-Riemann fractional di
ferential operator of ordera @19#. Our analysis generalize
the mathematical treatment of Ref.@18# and shows that the
Fokker-Planck operator can have a more general form ra
than only with a temporally constant force field. Anoth
approach to the description of anomalous transport in ex
nal fields is developed in Ref.@20#. The consideration is
based on a generalization of the classical Chapm
Kolmogorov equation. An interesting justification of the ge
eralized Chapman-Kolmogorov equation is that trapp
events are superimposed on the Langevin dynamics, wi
waiting-time distribution with infinite mean. By the choice o
special forms for the transfer kernel and the probability d
sity function of the waiting time between any two success
jump events in the generalized equation, one can reco
some models discussed in the literature.

If the probability densitypV(V,t) is known explicitly, the
solution of Eq.~6! can be calculated by means of

pv t~V,t !5E
0

`

Fa~z!pV~V,taz!dz. ~7!
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The formula is especially useful for some particular ca
whose exact solutions of the ordinary FPE have a clo
form ~for example, the harmonic potential leading to a line
force field in FPE!. It is interesting also to observe the inte
gral representation of the fractional FPE solution in Ref.@27#
@see expression~2.32!#. Now clearly, that formula is nothing
else as a consequence of the subordination relation~5! @or
~7!#. In this connection it should be noted that relation~5! is
not of convolution type, so the derivation of Eq.~6!, having
the fractional integral of time, from the ordinary FPE is n
entirely trivial.

Many papers@21–27# have focused on the derivation o
the fractional FPE with different potentials and its solutio
Starting with Ref.@28#, the continuous time random wal
approach is very popular for that goal. However, only
cently it has been shown that the solutions are density fu
tions of a stochastic process@29#. We support the latter poin
of view: the problem of anomalous diffusion should be an
lyzed with the exact definition of the corresponding rando
process. The density function and the master equation
derived from this process.

IV. FLUCTUATION-DISSIPATION RELATION AND H
THEOREM

According to Eq.~1!, the variance of the random variab
V is

^Vi
2~t!&5v i ,0

2 e22gt1
D

g
~12e22gt!, ~8!

where v i ,0 is the initial condition. Since the random pro
cessesV and S(t) are independent, we average express
~8! on the internal variablet so that

^Vi
2~ t !&5E

0

`

Fa~z!^Vi
2~ taz!&dz, ~9!

where the line over a variable denotes the average over
internal variablet. Calculating the following integral

E
0

`

Fa~z!e22gtazdz5Ea~22gta!, ~10!

the exponential functions in Eq.~8! are replaced with the
Mittag-Leffler function for Eq.~9!. The stationary state o
Eq. ~4! is finite so that

lim
t→`

^Vi
2~ t !&5D/g. ~11!

The constantsD andg are interpreted as generalized diffu
sion and damping coefficients, respectively. The me
^Vi(t)& is zero as well aŝVi(t)&50. The boundary case
a51 may be also included in the study, asS(t)5t. The
probability densitypS(t,t) reduces to the Diracd function,
and Eq.~1! becomes the ordinary Langevin equation in t
true timet.

On the other hand, the energy of a classical system
distributed equally among all degrees of freedom. We get
1-3
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fluctuation-dissipation relationD/g5kBT/m for the given
temperature of a bathT and the mass of a particlem, andkB
is the Boltzmann constant. The expression is very simila
the Einstein relation, but the constantsD andg are general-
ized. It should be pointed out that the stochastic time arr
does not break this equal distribution law and influences o
on the character of relaxation~slow power decay!. Therefore,
in this case the concept of temperature is valid, i.e., the
tionary state of the fractional FPE is defined by the tempe
ture T. The difference of entropies of equilibrium and arb
trary states gives a Lyapunov functionalL(t)>0. No
wonder that its temporal evolution confirms theH theorem.
Although the law of relaxation toward thermal equilibriu
changes, it remains monotonic, and the equilibrium state
the most entropy due to the Gibbs-Boltzmann distributi
The fact, that no modifications of the Boltzmann thermod
namics for anomalous diffusion described by the equation
type ~6! are required, was already noted in Refs.@25,27,30#.
However, the true cause of the result was not establis
Now it is clear that both processes~1! and ~4! are closely
connected and have a common ground.

V. GENERAL KINETIC EQUATION WITH THE
STOCHASTIC TIME CLOCK

For a general type of a Markovian process the gen
kinetic equation is

dpn~ t !

dt
5 (

k50

`

$Wnkpk~ t !2Wknpn~ t !%, ~12!

whereWkn are the transition probability rates from staten to
statek. This equation defines the probabilitypn for the sys-
tem to be in staten. The termWnkpk describes transitions
into the staten from statesk, and Wknpn corresponds to
transition out ofn into other statesk. The continuous version
of Eq. ~12! takes the form

dP~y,t !

dt
5E $W~yuy8!P~y8,t !2W~y8uy!P~y,t !%dy8

with the initial conditionP(y,0). Let us represent both thes
equations as

dp~ t !

dt
5Ŵp~ t !, ~13!

whereŴ denotes the transition rate operator. It is importa
to emphasize here that this operator is time independ
Equation~13! can be written in the integral form

p~ t !5p~0!1E
0

t

dtŴp~t!.

The Laplace transformp̃(s) with respect tot is given by

p̃~s!5E
0

`

e2stp~ t !dt,
02111
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and leads to

Ŵp̃~s!5sp̃~s!2p~0!.

Now we determine a new process with the probability eq
to

pa~ t !5E
0

`

pS~ t,t!p~t!dt.

In Laplace space the probabilitiespa(t) andp(t) are related
by p̃a(s)5sa21p̃(sa), where

p̃a~s!5E
0

`

e2stpa~ t !dt

is the Laplace image ofpa(t). By the simple algebraic trans
formations we find

Ŵp̃a~s!5sa21Ŵp̃~sa!5sa21$sap̃~sa!2p~0!%

5sap̃a~s!2p~0!sa21. ~14!

Thus, the fractional extension of Eq.~13! reads

pa~ t !5p~0!1
1

G~a!
E

0

t

dt~ t2t!a21Ŵpa~t!. ~15!

For a51 we recover Eq.~13!. For a system with discrete
states the generating function is of the form

G~z,t !5 (
k50

`

zkpk~ t !,

where the restrictionuzu<1 is imposed to ensure conve
gence of the series. With the help of the generating funct
one can find the moments by taking the derivative with
spect toz and then settingz51. The generating function o
the process governed by the stochastic time clock is given
the relation

Ga~z,t !5E
0

`

Fa~z!G~z,taz!dz. ~16!

Thus, the generating function for a discrete Markov proc
directed by the processS(t) can be obtained from the appro
priate generating function of the parent process by imme
ate integration.

As an example, we consider the relaxation in a two-st
system. LetN be the common number of objects in th
system. IfN↑ is the number of objects in the state↑, N↓ is
the number of objects in the state↓ so thatN5N↑1N↓ .
Assume that fort50 the states↑ dominate, i.e.,

N↑~ t50!

N
5p↑~0!51,

N↓~ t50!

N
5p↓~0!50,

wherep↑ and p↓ are the probabilities to find the system
the states↑ and ↓, respectively. Denote the transition rat
1-4
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FRACTIONAL DYNAMICS FROM THE ORDINARY . . . PHYSICAL REVIEW E67, 021111 ~2003!
by w. In the case the general kinetic equation with the s
chastic time clock~15! is written as

p↑~ t !5p↑~0!1
w

G~a!
E

0

t

~ t2t!a21$p↓~t!2p↑~t!%dt,

p↓~ t !5p↓~0!1
w

G~a!
E

0

t

~ t2t!a21$p↑~t!2p↓~t!%dt.

From the linearity of these equations it follows

p↑~ t !1p↓~ t !5p↑~0!1p↓~0!, p↑~ t !2p↓~ t !5p↑~0!

2p↓~0!2
2w

G~a!
E

0

t

~ t2t!a21$p↑~t!

2p↓~t!%dt.

Consequently, we obtain

p↑~ t !5
1

2
1

1

2
Ea~22wta!, ~17!

p↓~ t !5
1

2
2

1

2
Ea~22wta!. ~18!

The steady state of the system corresponds to equilibri
p↑(`)5p↓(`)51/2 ~Fig. 2!. The transition ratew is defined
by microscopic properties of the system~for instance, from
the given Hamiltonian of interaction and Fermi’s gold
rule!. The value (2w)21/a may be interpreted as a genera
ized relaxation time. The randomization of time clock ess
tially changes the character of relaxation in such a two-s
system. If onlyaÞ1, the relaxation has an algebraic dec
In this connection it should be mentioned here that the
perimental relaxation curves of glasses show just the a
braic decay@31#.

VI. SUMMARY

We have shown that the fractional FPE can be derived
using the ordinary Langevin equation. Although the p
ri-

m

ce
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cesses described by Eq.~6! are non-Markovian at the true
time, they are Markovian with regard to the internal time.
the strange kinetics results in the randomization of ti
clock of a Markov process. In the probability theory the o
eration is called the subordination of one random process
another@16#. As has been stated above, the subordinat
does not break the fluctuation-dissipation relation and thH
theorem. The stochastic time clock has a clear phys
sense—a particle interacts with a bath in random points
time so that there are memory effects. It should be noted
the memory is a direct consequence of the random time s
belonging to the strict domain of attraction of ana-stable
distribution. One and only one indexa characterizes both the
correspondinga-stable process and its hitting time proces
The stochastic differential equation~4! describes a random
velocity field directed by a random Markov process. In th
case the dynamical foundation of statistical physics is va
The procedure of the randomization of time clock exten
the domain of applicability for the general kinetic equatio

FIG. 2. The relaxation of the probabilitiesp↑ @Eq. ~17!# andp↓
@Eq. ~18!# plotted as a function of time. The dotted line correspon
to the equilibrium state.
bs,

b.

-

@1# W.T. Coffey, Yu.P. Kalmykov, and J.T. Waldron,The Langevin
Equation with Applications in Physics, Chemistry and Elect
cal Engineering~World Scientific, Singapore, 1996!.

@2# N.G. van Kampen,Stochastic Processes in Physics and Che
istry ~North-Holland, Amsterdam, 1984!.

@3# K. Hasselmann, Tellus28, 473 ~1976!.
@4# L. Arnold, Random Dynamical Systems~Springer-Verlag, Ber-

lin, 1998!.
@5# H. Hasegawa and T. Nakagomi, J. Stat. Phys.21, 191 ~1979!.
@6# H.C. Tuckwell, Stochastic Processes in the Neuroscien

~SIAM, Philadelphia, 1989!.
@7# J.P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@8# R. Metzler and J. Klafter, Phys. Rep.339, 1 ~2000!.
@9# H. Mori, Prog. Theor. Phys.33, 423 ~1965!.
-

s

@10# R. Kubo, Rep. Prog. Phys.29, 255 ~1966!.
@11# M. Pl”oszajczak and T. Srokowski, Ann. Phys.~N.Y.! 249, 236

~1996!.
@12# R. Muralidhar, D. Ramkrishna, H. Nakanishi, and D.J. Jaco

Physica A167, 539 ~1990!.
@13# K. Lindenberg and B.J. West,The Nonequilibrium Statistical

Mechanics of Open and Closed Systems~VCH, New York,
1990!.

@14# N.H. Bingham, Z. Wahrscheinlichkeitstheor. Verwandte Ge
17, 1 ~1971!.
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